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Summary
Upon fungal and bacterial pathogen attack, plants launch pattern-triggered immunity (PTI) by

recognizing pathogen-associated molecular patterns (PAMPs) to defend against pathogens.

Although PTI-mediated response has been widely studied, a systematic understanding of the

reprogrammed cellular processes during PTI by multi-omics analysis is lacking. In this study, we

generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investi-

gate rice (Oryza sativa) PTI responses to two PAMPs, the fungi-derived chitin and the bacteria-

derived flg22. Integrative multi-omics analysis uncovered convergence and divergence of rice

responses to these PAMPs at multiple regulatory layers. Rice responded to chitin and flg22 in a

similar manner at the transcriptome and proteome levels, but distinct at the metabolome level.

We found that this was probably due to post-translational regulation including ubiquitination

and acetylation, which reshaped gene expression by modulating enzymatic activities, and

possibly led to distinct metabolite profiles. We constructed regulatory atlas of metabolic

pathways, including the defence-related phenylpropanoid and flavonoid biosynthesis and linoleic

acid derivative metabolism. The multi-level regulatory network generated in this study sets the

foundation for in-depth mechanistic dissection of PTI in rice and potentially in other related

poaceous crop species.

Introduction

Plants have developed elaborate defence mechanisms to prevent

pathogen infection. Plants use plasma membrane-located pattern

recognition receptors (PRRs) to recognize pathogen-derived

pathogen-associated molecular patterns (PAMPs; Jones and

Dangl, 2006). This recognition is transduced to downstream

signalling components to trigger a suite of molecular and

physiological responses, collectively known as the pattern-

triggered immunity (PTI; Jones and Dangl, 2006). These responses

include activation of mitogen-activated protein kinase (MAPK)

cascades in the cytosol and up-regulation of transcription of

defence-related genes in the nucleus. To overcome the PTI-

mediated defence, some pathogens could secrete a number of

effector proteins into the host cells. In turn, plants have evolved

another layer of defence referred to as the effector-triggered

immunity (ETI), in which the plant cell cytoplasmic immune

receptors recognize pathogen-derived effectors (Cui et al., 2015;

Tsuda and Katagiri, 2010).

In plants, PTI serves as the first layer of defence conferring

resistance to pathogens (Bigeard et al., 2015). PTI-mediated

defence is induced by PAMPs, including fungal-derived chitin

and bacterial-derived flg22 (Boller and Felix, 2009). These

PAMPs are recognized by specific receptors, such as the chitin

receptor CERK1 and the flg22 receptor FLS2. PAMPs receptors

recognition systems have been extensively studied in Arabidopsis

and rice (Oryza sativa; Zipfel, 2008; Zipfel, 2014; Liu et al.,

2014), which makes these species valuable scientific models to

investigate the molecular mechanisms and cellular processes of

PTI.

Although PAMP receptors are specific, subsequent immune

responses such as gene expression patterns are conserved

(Bjornson et al., 2021; Boller and Felix, 2009; Jones and Dangl,

2006). In Arabidopsis, PTI-mediated defence involves production

of reactive oxygen species (ROS), transcriptional activation of

pathogenesis-related (PR) gene expression and secondary

metabolites accumulation such as callose and phytoalexins

(Boller and Felix, 2009). Excessive ROS is harmful to plants,

and hence, plants produce various ROS detoxifying enzymes

(Frederickson Matika and Loake, 2014). PAMP treatment

induces PR genes including chitinase genes and biosynthetic

genes of defensive secondary metabolites, such as flavonoids

and lignin precursors (van Loon et al., 2006). During PTI-

mediated defence response, the plant hormones-mediated

signalling pathways, especially salicylic acid (SA), jasmonic acid

(JA) and ethylene (ET) signalling, are also activated to mediate

various cellular responses (Aerts et al., 2021). Like in Arabidop-

sis, similar PTI-mediated defence occurs in rice against fungal
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and bacterial infection, such as ROS production, callose depo-

sition, MAPK signalling cascade activation and the hormone

signalling pathways activation (Liu et al., 2013, 2014; Yang

et al., 2013). Up to now, some single or combined omics

studies, including transcriptomic, proteomics and metabolomics,

have been reported to investigate the effects of plant responses

to invading pathogens or challenged by different PAMPs (Bassal

et al., 2020; Bjornson et al., 2021; Chen et al., 2018; Jeon

et al., 2020; Lovelace et al., 2018; Nobori et al., 2018;

Winkelm€uller et al., 2021). However, an integrative study of

multi-omics data is still lacking. Post-translational modification,

such as ubiquitination and acetylation, is known to modulate

protein abundance and function (Withers and Dong, 2017).

Therefore, it is important to explore how PAMP-induced defence

modulates rice immunity via post-translational modifications

(PTMs) as additional regulatory mechanisms. Moreover, most of

the systemic PTI omics analyses were generated from the dicot

plant Arabidopsis, and the conclusions from these existing

studies may not be extended to rice and other monocot species.

In this study, we generated and integrated metabolome,

transcriptome, proteome, ubiquitome and acetylome data to

elucidate rice responses to fungal and bacterial PAMPs, chitin and

flg22. We revealed multiple regulatory landscapes in rice during

PTI. We identified a set of defence responses that were common

and distinct between flg22 and chitin treatment. Furthermore, we

also mapped regulatory events in linoleic acid and alpha-linolenic

acid metabolism, and phenylpropanoid and flavonoid

biosynthesis. This study provides evidences of molecular events

at multiple layers and could facilitate further mechanistic dissec-

tion of PTI processes in rice and possibly other monocot species.

Results

Multi-omics strategy for defence responses induced by
chitin and Flg22

Plants trigger temporally coordinated immune responses such as

accumulation of ROS, phosphorylation of MAPKs and expression

of PR genes during PTI (Boller and Felix, 2009). We investigated

these processes in 1-week-old rice seedlings treated with chitin or

flg22 as in a previous study (Chen et al., 2018). Leaf fragments

from rice seedlings were separately immersed in chitin or flg22

solution, and the levels of ROS were measured using the luminol

chemiluminescence assay at different time points (from 0 to

20 min every 10 s). We found that ROS burst occurred rapidly

after treatment of chitin or flg22 with the peak at 5 min

(Figure 1a). MAPK3/6 phosphorylation level was significantly

increased with an evident elevation at 0.5 h (Figure 1b). We also

detected that the transcription of the PR and defence-related

genes (KS4, NAC4, PAL1 and PAL2) were elevated at 3 h after

chitin and flg22 treatment (Figure 1c). Taken together, these

results indicate that our experimental system is appropriate to

monitor physiological responses during rice PTI.

To comprehensively understand and compare the effects of the

two PAMPs, we performed experiments to generate multi-omics

Figure 1 Framework of integrative multi-omics network analysis for chitin- and flg22-triggered immune responses in rice. (a) Measurement of oxidative

burst in rice seedlings treated with water control, chitin or flg22. (b) MAPK activation in rice seedlings treated with water control, chitin or flg22. Anti-p42/

44 antibody was used for Western blotting. Loading of total proteins was evaluated by Coomassie brilliant blue (CBB) staining. (c) Quantitative real-time

PCR analysis of pathogenesis-related genes in response to chitin or flg22. For each sample, the ubiquitin gene OsUBQ1 was used as internal control. Error

bars present the � SD of three biological replicates. (d) Multiple-omics approaches design and datasets summary.
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data. One-week-old rice seedlings were treated with chitin or

flg22 for 3 h and subjected to different omics approaches

including transcriptome, proteome, acetylome and metabolome

analysis. Briefly, we detected 41 098 transcripts derived from

37 780 protein encoding genes, 7377 proteins, 839 acetylated

proteins and 13 903 mass features (Figure 1d). In addition, we

identified 2882 ubiquitinated proteins from our previous study

(Figure 1d; Chen et al., 2018).

To determine changes induced by PAMP treatment in rice, we

compared chitin and flg22 responses in these five datasets using

log2-fold changes compared to the water-treated control samples

(Figure 2a,b). We found that all five P-values of paired t-tests

derived from five datasets were lower than 0.0001, suggesting

significant effects on rice were induced by the two PAMPs. To

further determine the similarity between rice responses to chitin

and flg22, Pearson’s correlation analysis was performed. Rice

metabolites showed the least correlation between chitin and

flg22 (R2 = 0.34). By comparison, correlation coefficients of

proteome and acetylome were 0.49 and 0.42 respectively.

Ubiquitome and transcriptome showed higher R values, 0.62

and 0.63 (Figure 2c), respectively, indicating that rice responded

to chitin and flg22 in a relatively similar manner at transcriptional

and ubiquitination level.

Metabolite signatures during PTI

Metabolic response during PTI has been extensively studied in

Arabidopsis (Misra et al., 2016; Schenke et al., 2011), but it is not

clearly known in rice. To determine how PAMPs treatments

impact rice metabolism, we generated metabolome dataset by

performing a non-targeted liquid chromatography-mass spec-

trometry (LC-MS) analysis with 10 biological replicates per

treatment. (Dataset S1; Figure S1a, b). Compared to the control

group, we identified 606 up-regulated and 182 down-regulated

mass features (FDR < 0.05; fold-change >2) in chitin-treated

samples, and 325 up-regulated and 346 down-regulated mass

features in flg22-treated samples (Figure 3a; Dataset S1), sug-

gesting a stronger effect of chitin than flg22 on rice metabolism.

We then used MetaboAnalyst version 4.0 (Chong et al., 2018) to

annotate putative metabolites and associated pathways induced

by chitin and/or flg22 in rice. In total, 113 significantly altered

compounds were characterized, 97 of which showed distinct

regulation patterns between chitin and flg22 treatments (Dataset

S2), suggesting distinct rice responses to chitin and flg22 at the

metabolome level. We then generated a predictive network to

uncover metabolite–metabolite interactions extracted from

STITCH 5 (Szklarczyk et al., 2016), according to the known

reactions in PubMed. This enabled us to illustrate the potential

functional relationships between detected metabolites and their

associated metabolites in this study (Figure 3b). In chitin-treated

samples, compounds associated with energy metabolism, nucleo-

tide metabolism, amino acids, pyridoxal phosphate (PLP) and

serotonin were influenced. Meanwhile, in flg22-treated samples,

compounds associated with hexacosanoic acid, pyruvic acid and

citric acid were influenced (Figure 3b). To determine metabolic

pathways associated with the altered metabolites, we performed

enrichment analysis using quantitative analysis of annotated

compounds (Dataset S3). In total, 15 and 9 pathways were sta-

tistically enriched (P-adj < 0.05) in the chitin- and flg22-treated

Figure 2 Rice response to chitin and flg22 severely in multiple-tiered regulation. (a) Overview of altered metabolites, transcripts, proteins and post-

translational modifications (PTMs) as ubiquitinated and acetylated proteins. The violin plots show the fold changes values in chitin- and flg22-treated

samples comparing to control samples. (b) Dot plots distribution of fold changes values of chitin-treated and flg22-treated samples compared to the control

samples. The lines indicate the patterns of variation between chitin-treated and flg22-treated samples for each variable. (c) Pearson correlation analysis to

determine the similarity between chitin-treated and flg22-treated samples. The x-axis indicates fold changes values obtained for chitin-treated samples, and

y-axis indicates fold changes values obtained for flg22-treated samples. The R values indicate the degree of correlation.
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samples, respectively, supporting the possibility that rice

responded to chitin more drastically than to flg22 at the

metabolome level (Figure 3c). Starch and sucrose metabolism,

galactose metabolism and amino sugar and nucleotide sugar

metabolism were enriched in both chitin and flg22 samples

(Figure 3c). Pathways such as phenylpropanoid biosynthesis,

ascorbate and aldarate metabolism and tryptophan biosynthesis

were enriched only in chitin-treated samples. In contrast, path-

ways of diterpenoid biosynthesis, biotin metabolism, cutin,

suberine and wax biosynthesis; biosynthesis of unsaturated fatty

acids and alpha-linolenic acid metabolism were enriched only in

flg22-treated samples (Figure 3c). We also found compounds

significantly suppressed by both PAMPs, that is, abscisic aldehyde

and hydroxychlorophyllide (Figure 3d). In contrast, catechin and

tetrahydrofuran were induced by both treatments (Figure 3e).

These compounds commonly impacted by both PAMPs could be

defined as core metabolites that are responsive to PAMP

treatment.

Transcriptomic signature during PTI

We reasoned that the metabolic changes in PAMPs-treated rice

seedlings were underpinned by alteration in gene expression.

Figure 3 In-depth metabolomics analysis defined distinct patterns in rice treated with chitin or flg22. (a) Abundances of metabolites features were

quantified by untargeted metabolomics from 10 biologically independent replicates for each group from rice seedling samples. The cloud plots

demonstrated metabolite features deemed significant by two-sided ANOVA in contrasts (P ≤ 0.05) to an additional fold change cut-off (fold change > 2)

detected from positive polarity. The x-axis indicated retention time of features, and the y-axis indicated m/z values. The size of the circles indicated the

degree of fold changes. The colours indicate up-regulated (green) or down-regulated (red) features comparing to the control (ck). (b) Metabolite–

metabolite interaction networks highlighted the potential functional relationships between the sets of annotated metabolites, and how the altered

compounds in chitin-treated (red) and flg22-treated (blue) samples impact to neighbour metabolites in the subnetworks. The chemical–chemical

association for the metabolites network was extracted from STITCH. (c) Heatmap shows hierarchical clustering of the metabolic pathways from

metabolomics data. Heatmap demonstrated z-scores obtained from enrichment analysis by using fold changes values and P-values from all the features

detected from metabolomics. The colours indicated the significance as -log10 (FDR) of enrichment for each metabolic pathway in rice. (d) Boxplot shows

intensities of detected metabolites which are down-regulated in chitin or flg22 treatment. Each dot represents intensity of corresponding compounds

detected in the metabolomics. All the compounds shown here are significantly down-regulated (P-adj < 0.05). (e) Boxplot shows intensities of detected

metabolites which are up-regulated in chitin or flg22 treatment. Each dot represents intensity of corresponding compounds detected in the metabolomics.

All the compounds shown here are significantly up-regulated (P-adj < 0.05).
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Therefore, we compared transcriptomes of rice seedlings treated

by chitin or flg22. After alignment of the clean reads to the rice

reference genome (IRGSP-1.0), the read counts were used to

validate data quality by Pearson correlation and principal

component analysis (PCA; Figure S2a,b). For differentially

expressed genes analysis (DEGs) (FC > �2, P-adj < 0.05), we

identified 531 genes that were specifically up-regulated by chitin,

656 genes that were up-regulated only by flg22 and 287 genes

that were up-regulated by both PAMPs. We also identified 240

down-regulated genes in response to chitin specifically, 260

down-regulated genes in response to flg22 specifically and 120

down-regulated genes in response to both PAMPs (Figure 4a,b;

Dataset S4). Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis (P-adj < 0.05) showed that path-

ways associated with glycolysis/gluconeogenesis, phenyl-

propanoid biosynthesis, flavonoid biosynthesis, fructose and

mannose metabolism and carbon metabolism were induced by

both PAMPs (Figure 4c). Alanine, aspartate and glutamate

metabolism and pentose phosphate pathway were specifically

responsive to chitin (Figure 4c,d). Linoleic acid metabolism and

alpha-linoleic acid metabolism were only significantly induced by

flg22 but not chitin, which was consistent with the results of

metabolome analysis (Figure 3c). Gene ontology terms signifi-

cantly enriched among DEGs (FDR < 0.05) were also identified

(Figure S2c,d).

During PTI, the host recognizes PAMPs by receptors located on

the surface of plant cells, and transmits the immune signal

through receptor-like kinase (RLK), MAPK cascade and CDPK

(calcium-dependent protein kinase), activating the expression of

transcription factors and subsequent defence-related genes, such

as hormone signalling pathway genes and secondary metabolism

pathway genes (Boller and Felix, 2009; Jones and Dangl, 2006).

Recently, a set of more than 1,000 genes in Arabidopsis thaliana

has been reported to be the core PAMP-responsive genes at

transcription level (Bjornson et al., 2021). For a comparison

analysis, we extracted the orthologous genes between

A. thaliana and rice, and compared our DEGs to the orthologues

of the Arabidopsis core PAMP-responsive genes. A total of 51

genes shared between rice and Arabidopsis were identified as

they were differentially expressed in either chitin- or flg22-treated

samples in our study (Dataset S4). Several of these genes encode

WRKY domain-containing proteins, phosphatases for MAPK and

Ca2+ modulation proteins, indicating they are key factors in PTI in

both species. To shed light on the underlying response to PAMPs

at transcriptional level in rice, we extracted the DEGs associated

with defence response, and found that most of which were

similar in responding to chitin and flg22 (Figure 4e; Figure S3a;

Dataset S5). Many RLK genes, including receptor-like cytoplasmic

kinases (RLCKs) and wall-associated kinase (WAK) genes, were

induced by both PAMPs. Calcium signalling pathway genes, such

as some calmodulin-like protein (CML) genes, were also induced

by both PAMPs. Additional to that, 24 WRKY TFs were detected

in the transcriptome, nearly all of which were induced by both

PAMPs, including WRKY62 and WRKY76, which were known to

play key roles in rice blast disease resistance (Liu et al., 2016).

Other PAMPs-induced TF genes include homeobox TFs, bZIP TFs,

NAC TFs, Dof family TFs, heat stress TFs, BSRD1, JAMYB and

CEF1/OsMYB103.

The salicylic acid (SA), jasmonic acid (JA) and ethylene (ET)

signalling pathways are three key players in plant PTI response

(Berens et al., 2017; De Vleesschauwer, et al., 2014). We found

many ET signalling pathway genes (such as ERFs, DREB1s, PLTs

and AP2/EREBP89) and JA signalling pathway genes (such as

OsDR10, JAMYB, AOS2 and OsOPR7) that were up-regulated by

both PAMPs (Figure 4e; Figure S3a; Dataset S5). Other hormone

pathways, including IAA, ABA, GA and BR signalling pathways,

may also affect SA-JA-ET pathways to regulate plant defence

response (Figure 4e; Figure S3a; Dataset S5) (De Vleesschauwer,

et al., 2014). Similarly, many genes involved in these hormone

pathways were induced by both PAMPs (Figure 4e; Figure S3b;

Dataset S5). We also found many redox reaction-related genes

were induced by both PAMPs, whereas many genes encoding

laccases, glutathiones, catalases, oxidase and peroxiredoxin were

repressed by both PAMPs. However, among the identified PR

genes in transcriptome, PR1-73, CHT11/PR3 and CHT6/PR-3 were

induced by chitin, PR10B, PR1-73, PR5, CHT11/PR3, CHT6/PR-3

and CHT8 were induced by flg22 (Figure S3a), indicating differ-

ence between chitin- and flg22-induced PR gene expression.

Taken together, the transcriptome analysis suggests that rice

response to chitin and flg22 is in a similar manner to regulate

gene expression, because many defence-related genes are

commonly induced in response to both PAMPs, which serves as

core factors tightly associated with defence-related pathways.

Furthermore, numerous genes in several metabolic pathways

such as glycolysis/gluconeogenesis, phenylpropanoid biosynthesis

and flavonoid biosynthesis are significantly affected at transcrip-

tional level (Figure S3c), and this is consistent with result of our

comparative metabolomics analyses.

Integrative analysis of proteome and transcriptome

We employed iTRAQ approach to perform proteomics analyses

for chitin, flg22 and water-treated rice seedling samples (Fig-

ure S4a–e). In total, 7,387 detected proteins were used for data

analysis (Dataset S6). We compared differentially expressed

proteins (DEPs) between chitin and flg22 responses (FC > �1.5,

P-adj < 0.05; Figure 5a,b; Dataset S7). As shown in Figure 5b,

we found that 278, 226 and 76 proteins were significantly

induced by chitin, flg22 or both respectively. In contrast, 297, 274

and 107 proteins were significantly suppressed by chitin, flg22 or

both respectively. Further gene ontology (GO) enrichment anal-

ysis suggested that DEPs by both chitin and flg22 were associated

with defence-related processes, such as oxidation reduction,

response to stress and response to stimulus (Figure 5c). Proteins

associated with oxidoreductase activity, transition metal ion

binding and cytoplasmic vesicle were shown to be enriched in

responding to chitin specifically. Further KEGG metabolic path-

way enrichment analysis suggested that phenylpropanoid biosyn-

thesis, ether lipid metabolism, biosynthesis of amino acids, carbon

fixation in photosynthetic organisms and inositol phosphate

metabolism were enriched in both PAMP treatments (Figure 5d,

e). Metabolic pathways of mRNA surveillance and arginine

biosynthesis were only significantly enriched in chitin-induced

samples (P-adj < 0.1) (Figure 5d,e). Metabolic pathway of fruc-

tose and mannose metabolism was significantly enriched only in

flg22-induced samples (P-adj < 0.1) (Figure 5d,e). These results

clearly suggested that, similar to the rice transcriptome, chitin and

flg22 induced similar defence response at translational level.

Rice protein abundance changed by PAMP treatment could be

reflected by changes at the transcript level. To test this idea, we

performed correlation analysis by comparing the relative levels as

log2FC values of transcripts and proteins affected by two PAMPs

but found very weak correlation between transcriptome and

proteome responses in both chitin and flg22 treatments (R2 =
0.15/0.21; Figure 6a). We detected a number of genes showing
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convergent pattern of mRNA and proteins levels as core respon-

sive factors towards both PAMPs, and further enrichment analysis

suggests that they are tightly associated with membrane-

bounded vesicle, catalytic activity and lipid metabolic process

(Figure 6b). Taken together, these results suggest that there are

significant post-transcriptional and/or post-translational events

that modulate protein abundances during rice responses to chitin

and flg22.

Convergence and divergence of rice metabolic pathway
responses in chitin and Flg22 PTI at multiple regulatory
layers

We observed distinct responses between chitin and flg22 PTI in

rice metabolome, but similar responses in rice transcriptome and

proteome. By combining transcriptome, proteome and metabo-

lome results (Figure 6c), we identified a number of pathways

Figure 4 The rice seedlings transcriptome is substantially altered upon chitin or flg22 treatment. (a) Volcano plot comprises of chitin treatment to ck, and

flg22 treatment to ck from RNA-seq analysis. The colours indicated genes whether they significantly differentially expressed genes under the cut-off of

(P < 0.05) or/and fold changes (FC > 2). (b) Venn diagram shows the numbers of differentially expressed genes identified in chitin-treated and flg22-

treated samples. The numbers indicated the total numbers of either up-regulated or down-regulated genes. The overlapping differentially expressed genes

were also indicated. DEGs are defined under the cut-off of P-adj < 0.05 and FC > 2. (c) Network plots the detailed survey to visualize detailed enrichment

of metabolic pathways in rice impact by DEGs in chitin-treated and flg22-treated samples. The colours indicate the comparison groups derived from RNA-

seq analysis. (d) Dot plot shows the P-values as significances of enrichment of the pathways enriched by DEGs. The size of dots indicates the gene ratio of

DEGs in each pathway. The colour indicates the degrees of significance as P-adj values. Only pathways showing P-adj less than 0.05 are visualized and

analysed. (e) Dot plot shows fold changes of DEGs in RNA-seq of chitin-treated and flg22-treated samples compared to control samples. The lines indicated

the paired values detected in chitin-treated and flg22-treated samples.
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enriched in both chitin and flg22 treatment, such as glycolysis/

gluconeogenesis, phenylpropanoid biosynthesis and amino sugar

and nucleotide sugar metabolism. Among them, phenyl-

propanoid biosynthesis pathway was induced in all samples,

except in the metabolome of flg22-treated samples. Flavonoid

biosynthesis, which was downstream of the core phenyl-

propanoid biosynthesis, was induced in both PAMPs significantly

at transcription level. Consistently, we also observed a number of

metabolites altered in flavonoid biosynthesis (Dataset S3). Inter-

estingly, flavonoid biosynthesis pathway was significantly

enriched among DEGs, but not among DEPs or altered metabo-

lites, suggesting that there may be additional post-transcriptional

regulation mechanism to modulate this process. Pathways

associated with carbon metabolism and 2-oxocarboxylic acid

metabolism were enriched among DEGs and DEPs but not for

metabolites, possible because less compounds were detected.

Moreover, we found flg22-specific responsive pathways, such as

linoleic acid metabolism, alpha-linolenic acid metabolism, biosyn-

thesis of non-saturated fatty acids, diterpenoid, sesquiterpenoid

and triterpenoid biosynthesis, biotin metabolism and riboflavin

metabolism, suggesting that they could play key roles in

responses to flg22. We visualized enriched pathways by providing

DEGs and DEPs identified (Figure 6d,e). We observed that the

protein abundance and mRNA associated with phenylpropanoid

biosynthesis were significantly changed when treated with chitin

or flg22, implying that phenylpropanoid biosynthesis pathway

was important in rice to respond to PAMPs. Strikingly, starch and

sucrose metabolism were controlled by increase at both mRNA

and protein levels upon chitin treatment (Figure 6d). These results

indicated that chitin and flg22 induced similar defence response

by modulating phenylpropanoid biosynthesis and starch and

sucrose metabolism. The ether lipid metabolism was regulated by

decreasing protein level upon chitin induction (Figure 6d). Inositol

phosphate metabolism was influenced at both mRNA and protein

levels upon flg22 induction (Figure 6e).

Taken together, these results suggested that rice positively

activated phenylpropanoid biosynthesis, flavonoid biosynthesis

and glycolysis/gluconeogenesis in response to chitin and flg22 in a

similar manner at transcriptional and translational level, but the

responses at metabolic level were distinctive.

Dynamic post-translational protein modulation during
chitin and Flg22 PTI

Previously, we discovered dynamic protein ubiquitination in rice

treated with chitin and flg22 in a comparative ubiquitome study

(Chen et al., 2018), suggesting ubiquitination is important for

Figure 5 Global protein profiling revealed a strong influence of PAMPS treatment on the rice proteome. (a) Volcano plot shows both -log10(P-adj) and

log2-fold changes of all the proteins detected from proteomics in chitin-treated and flg22-treated samples, after comparing to ck samples. The back dots

indicated differentially expressed proteins (DEPs) significantly (P-adj < 0.05, FC > 1.5). (b) Venn diagram shows numbers of differentially expressed proteins

detected in chitin-treated and flg22-treated samples. (c) Heatmap shows the normalized -log10 (P-adj) values to demonstrate enrichment analysis using

DEPs and defined gene ontology terms enriched by DEPs. (d) Dot plots show significances of enrichment for the metabolic pathways detected by using

DEPs. (e) Network plot showed detailed information of pathways enriched by DEPs.
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protein abundance and function during PTI response. To test this

idea, we processed our previous ubiquitome dataset (iProX,

project ID IPX0001089000; Dataset S8) by imputing missing

values and normalization of the counts of detected peptides

(Figure S5a–e). We set up cut-off (P < 0.05 and FC > �1.5) to

define differentially ubiquitinated proteins (DUPs) in chitin- and

flg22-treated samples (Dataset S9). We then integrated proteome

and ubiquitome datasets, and observed that many DEPs detected

in proteomics were also differentially ubiquitinated (Figure 7a,b).

This result suggested that rice may regulate expression or

translation of these proteins via ubiquitination, which may explain

the inconsistent responses between transcriptome and proteome.

Among them, 23 and 14 up-regulated proteins were significantly

more ubiquitinated in response to chitin and flg22 respectively.

Meanwhile, 20 up-regulated proteins were significantly less

ubiquitinated in response to chitin compared to 9 proteins that

demonstrated the same abundance and ubiquitination pattern in

response to flg22 treatment. Furthermore, 10 down-regulated

proteins were significantly more ubiquitinated in chitin treatment

compared to 16 such proteins in the flg22-treated group

(Figure 7a,b). This analysis captured a regulatory signature to

protein expression in rice as the increased chitin-responsive

Figure 6 Integrative analysis of transcriptomics and proteomics. (a) mRNA/protein expression fold changes in chitin-treated and flg22-treated samples

compared to control. mRNAs/proteins differentially expressed (|log2[FC]| > 1; P-adj < 0.05). (b) mRNAs/proteins differentially expressed in consistent or

inconsistent patterns are coloured as indicated. The enriched gene ontology function enriched by groups of mRNAs/proteins is shown for each category.

List of GO terms enriched in the group of proteins that are significantly induced at both mRNA and protein levels, or proteins that are significantly

suppressed only at the protein level. (c) Heatmap shows integrated enrichment analysis of metabolic pathways using DEGs, DEPs and result from

metabolomics pathways studies, using -log10 (P-values) from enrichment analysis derived from each analysis. Regulatory networks of metabolic pathways

of rice impact by chitin (d) and flg22 (e) at protein level and transcript level. The up-regulated or down-regulated at both levels were indicated by colours.
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Figure 7 Correlation between protein and ubiquitination or acetylation. Proteins/ubiquitinated proteins expression fold changes in chitin treated (a) and

flg22 treated (b) were demonstrated after comparing to control samples. Proteins/ubiquitinated proteins differentially expressed (|log2[FC]| > 0.83; P-

adj < 0.05) in both, either and neither (unchanged) ubiquitome and proteome studies were grouped and colour coded. The numbers of proteins/proteins

ubiquitinated are shown for each category. List of enriched GO terms in the box are significantly affected proteins or ubiquitinated proteins by chitin or

flg22 treatment. Green dots represent genes showing up-regulated in proteomics and more ubiquitinated. Red dots represent genes showing down-

regulated in proteomics and less ubiquitinated. Blue dots represent genes showing up-regulated in proteomics but less ubiquitinated. Orange dots

represent genes showing down-regulated in proteomics but more ubiquitinated. Volcano plot shows the differentially acetylated proteins detected in

chitin-treated (c) and flg22-treated (d) samples. (e) Venn diagram shows the numbers of differentially acetylated proteins detected in acetylome by using

cut-off as P-adj < 0.05 and FC > 2. (f) The heatmaps show relative acetylation levels of histone proteins, transcription factors and ribosome proteins in rice

responding to chitin and flg22 after comparing to control samples.
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proteins could be potentially degraded via ubiquitination after

3 hpi, and decreased proteins maybe increased by lowered

ubiquitination rather than up-regulated transcription. Consistent

with this assumption, these proteins were tightly involved in

processes such as ribosome and translational elongation, which

were associated with protein expression or translational regula-

tion. To gain further insights into other PTMs during PTI in rice,

we performed genome-wide acetylome analysis. We deployed

three biological replicates for chitin, flg22 and water-treated rice

seedling samples, following correlation analysis and normalization

(Figure S6a-e). In total, we found 10 572 acetylated sites

corresponding to 839 protein-encoding genes in rice (Dataset

S10). Differentially acetylated proteins (DEAs) were identified

using normalized intensities of acetylated proteins (Figure 7c-e;

Dataset S11). There were 34 and 110 proteins significantly more

acetylated in chitin-treated and flg22-treated rice tissues respec-

tively (P-adj < 0.05, FC > �2). There were 43 and 6 proteins

significantly less acetylated when treated by chitin and flg22

respectively. Based on enrichment analysis, we observed that the

differentially acetylated proteins in response to chitin and flg22

were predominantly involved in ribosomal subunit, ribonucleo-

protein complex, protein-containing complex, nucleosome, DNA

packaging complex, translational elongation and translation

(Figure S7a,b). These results clearly suggested that the acetylation

process modulated proteins that played important roles in

translational regulation to regulate gene expression. We also

found a number of histone proteins in differentially acetylated

proteins (Figure 7f), suggesting that epigenetics regulation could

also be involved in PTI response in rice. These results highlighted

sophisticated post-translational modification processes are

deployed to regulate protein abundance in rice in response to

PAMPs.

Multi-omics analysis uncovered detailed convergence
and divergence in metabolic pathways associated with
defence response

Our omics analysis enabled us to understand the underlying

connections between the metabolites and its upstream enzymatic

reactions controlled by the gene expression or PTMs of proteins.

We further focused on phenylpropanoid biosynthesis and

flavonoid biosynthesis because they were defence-associated

and responsive to both PAMPs in our dataset (Dixon et al., 2002;

Treutter, 2005). We also focused on the pathway glycolysis/

gluconeogenesis as it showed the highest degree of significance

in transcriptome response, and all the relevant compounds were

detected in metabolome. In addition, we also selected the linoleic

acid metabolism for further in-depth analysis, as it showed

specific response to flg22. Using simplified models of metabolic

pathways from KEGG and Pathview (Luo et al., 2017), we

mapped the variables with quantitative changes occurred in at

least one dataset, in our analysis (Figure 8).

Increased abundance of enzymes [6.2.1.12], [1.14.1311] in

phenylpropanoid metabolism appeared to be mediated by

increased transcription, which in turn, partially increased the

abundance of the corresponding metabolites (Figure 8a). We

observed consistent regulation in response to both PAMPs at

transcriptional and PTMs levels, but divergent pattern at the

metabolic level, as eight compounds were differentially altered

between chitin and flg22 PTI. Seven co-induced metabolites such

as phenylalanine, p-cinnamic acid, 5-hydroxyferulic acid and

secoisolariciresinol were associated with significant increases in

mRNA but reduced ubiquitination levels, implying a coordinated

regulation. We found genes associated with enzyme [1.2.1.44]

were translationally down-regulated by both PAMPs, which

correlated with increased abundance of caffeylaldehyde and

coniferylaldehyde, but decreased cinnamaldehyde and sinapalde-

hyde. We did not detect significant changes in cinnamoyl-CoA,

and its derivatives, p-cinnamoyl-CoA, caffeoyl-CoA and feruloyl-

CoA (Figure 8a). However, in flavonoid biosynthesis, genes

associated with enzymatic reaction [2.3.1.74], a vital step to

process downstream compounds, were down-regulated by both

PAMPs. And this led to significantly increased metabolites, such

as pinocembrin chalcone, naringenin chalcone and eriodictyol

(Figure 8b).

In glycolysis/gluconeogenesis pathway, alpha-D-glucose-1P,

alpha-D-glucose-6P, oxaloacetate and pyruvate were significantly

up-regulated in chitin-treated tissues. Meanwhile, D-glucose,

glyceraldehyde-3P, glycerone-P and acetyl-CoA were down-

regulated by both PAMPs. The abundance of alpha-D-glucose-

1P in rice was different between chitin and flg22-treated samples.

However, its derivative, beta-D-Fructose, was increased via

enzymatic reaction [2.7.1.11], which is associated with elevated

mRNA level. Moreover, reduced ubiquitination levels were

detected in flg22-responsive proteins (Figure 8c). Likewise, we

observed lower abundance of flg22-responsive oxaloacetate than

that in chitin, and rice modulates genes associated with

enzymatic reaction [41.1.49] to increase flg22-responsive pyru-

vate to the same level as chitin (Figure 8c).

Interestingly, linolenic acid-associated pathways were specifi-

cally activated in flg22-treated samples. During flg22-responsive

process, gene expression was negatively regulating abundance of

metabolites (Figure 8d). By contrast, in alpha-linolenic acid

metabolism, almost all enzymatic reactions were positively

activated by enhanced transcription in flg22-treated samples

and this correlated with increased abundance of eight com-

pounds in this pathway (Figure 8e).

Taken together, our integrated analysis provides dynamic

metabolic landscape controlled by multilayers including transcrip-

tion, translation and post-translational protein modification that

serves as a foundation for in-depth molecular characterization by

researchers.

Discussion

Previous studies have applied single or dual omics to uncover the

molecular mechanisms involved in plant–pathogen interactions

(Bassal et al., 2020; Bjornson et al., 2021; Chen et al., 2018; Jeon

et al., 2020; Lovelace et al., 2018; Nobori et al., 2018, 2020;

Winkelm€uller et al., 2021). In this study, we performed a multi-

omics analysis consisting of five omics datasets including

metabolome, transcriptome, proteome, ubiquitome and acety-

lome to systematically elucidate PTI triggered by two different

PAMPs in rice. The analysis summarized a landscape of detailed

convergence and divergence between chitin and flg22 responses

in rice. Compared to previous single- or dual-omics analyses, our

integrated multi-omics analysis revealed dynamic and distinct

multi-layered regulation during chitin and flg22 PTI and set the

foundation for further characterization in depth. We found chitin-

triggered PTI responses were more similar to flg22 at transcrip-

tional and translational levels, but much stronger and different

from flg22 at PTMs and metabolome levels, which were

overlooked by previous analyses. We also deduced detailed

regulatory mechanisms that may cause differences in several

plant defence-related metabolic pathways in response to the two
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PAMPs. Moreover, the linoleic acid-associated pathway was

identified as an flg22-specific responsive pathway through this

multiple-omics analysis.

We have clearly shown that rice transcriptomic responses to

flg22 and chitin in a very similar manner (Figures 2 and 4), which

was in line with a recent study in Arabidopsis thaliana that found

a suite of conserved response to flg22 and chitin (Bjornson et al.,

2021). In this study, we summarized details of PAMPs-induced

genes in rice and correlated them with defence functions. A

considerable number of genes, especially those involved in early

defence signalling pathways, were commonly induced by both

PAMPs at the transcription level (Figure 4). Furthermore, our

RNA-seq analysis clearly provided evidence of how different

PAMPs affected rice metabolic pathways in a convergent manner,

particularly for glycolysis/gluconeogenesis, phenylpropanoid

biosynthesis and flavonoid biosynthesis. Consistent with the

metabolomic analysis, we uncovered that linoleic acid-associated

pathways in rice were very likely to be specifically affected by

flg22. Additional to that, many defence-related genes were

found among chitin- and flg22-induced DEGs, including genes

encoding RLKs, MAPKs and CDPKs, transcription factors, hor-

mone signalling components and secondary metabolic genes

(Figure 4e; Figure S3). Interestingly, some key growth–defence
balance master regulator genes, including OsALDH2B1 (Ke et al.,

2020), BSRD1 (Li et al., 2017), GRF9 (Zhang et al., 2018), HD16

(Nemoto et al., 2018), DWARF11 (Zhou et al., 2017), GLW7/

SPL13 (Si et al., 2016) and EBR1 (E3 ubiquitin ligase interacts with

OsBAG4 for balance; You et al., 2016), were identified as DEGs

(Figure 4e; Figure S8a,b). These findings highlighted a genome-

wide landscape of growth–defence trade-off balance during rice

PTI response.

We showed that rice metabolic responses to chitin and flg22

were distinct, as there were more pathways significantly enriched

in chitin-treated samples than that in flg22-treated ones. This was

consistent with our phenotype assay, from which we observed

higher level of ROS in flg22-treated samples than that in chitin-

treated ones, and higher degree of phosphorylation of MAPK in

chitin-treated samples than that in flg22-treated ones (Figure 1).

This was probably due to a more adaptive response occurring

during plant responses to chitin. By further predictive analysis, we

found pyridoxal phosphate (PLP) and serotonin were highly

affected in chitin-treated samples. PLP is an active form of vitamin

B6, which was reported to modulate cellular antioxidant capacity

for plant immune system (Zhang et al., 2014a, 2014b). Serotonin

is a primary amino compound that is the 5-hydroxy derivative of

tryptamine, which involves in plant innate immunity by affecting

cellular redox status and callose accumulation, the latter functions

as a mechanical barrier against pathogens (Nehela and Killiny,

2020; Zhao et al., 2015). We also defined a group of novel

metabolites discovered in the metabolome as putative PAMPs-

responsive compounds, as they showed convergent pattern to

both PAMPs, such as abscisic aldehyde, octadcatrienoyl-CoA and

catechin (Figure 3). Abscisic acid (ABA) is a plant hormone

involved in seed development and responds to various environ-

mental stresses. Oxidation of abscisic aldehyde is the last step of

ABA biosynthesis and is catalysed by aldehyde oxidase (Seo et al.,

Figure 8 High-resolution mapping of regulatory network to metabolic pathways. Simplified metabolic flow schemes described changes in metabolites,

and enriched enzymes associated with transcripts, proteins, ubiquitinated proteins and acetylated proteins in phenylpropanoid biosynthesis (a), flavonoid

biosynthesis (b), glycolysis/gluconeogenesis (c), linoleic acid metabolism (d) and alpha-linolenic acid metabolism (e). The colours indicated rates of up- or

down-regulation of groups of enzymes.
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2000). These findings highlighted the signatures of metabolites in

rice responding to chitin and flg22, and explained the more

severe response to chitin at metabolomic level.

Further integrative analysis of transcriptome with proteome in

rice uncovered an inconsistent pattern between mRNA and

protein abundance in both PAMPs treatments, although we

concluded that rice response to both PAMPs was similar at the

translational level. One of the explanations to this inconsistency

was that RNA-seq could detect mRNA at higher sensitivity than

protein detection with the iTRAQ-based proteomics platform.

However, further analysis using the previous ubiquitome dataset

(Chen et al., 2018) suggested that a protein turnover regulation

may play a key role in this disparity, as we observed that a

considerable number of DEPs were differentially ubiquitinated

(Figure 7). The differentially ubiquitinated proteins were signifi-

cantly enriched in ribosome functions and translation-related

regulations, indicating their potential roles in further defence

response after 3 h treatment of chitin and flg22. We character-

ized 180 differentially acetylated proteins and found more DEAs

in chitin-treated samples than that in flg22-treated samples. By

contrast, further analysis with acetylome suggested a convergent

pattern of core DEAs between chitin- and flg22-treated samples,

including histone-related genes, transcription factor-encoding

genes and ribosome-encoding genes (Figure 7). Further gene

ontology enrichment analyses confirmed the importance of these

DEAs as core units acting as gene expression regulators to

modulate response to PAMPs in rice (Figure S7). Acetylome

analysis not only summarized distinct responses between chitin-

and flg22-treated samples, in general, but also uncovered the

core units that respond to both PAMPs. PTMs analysis demon-

strated that there is a sophisticated regulatory mechanism in rice,

which is highly possible by regulating protein expression and

protein functions. Further analysis is essential to discover more

regulation events to study response to PAMPs.

We constructed connections between genetic control and

metabolites in glycolysis/gluconeogenesis, phenylpropanoid

biosynthesis and flavonoid biosynthesis. Based on that, we not

only suggested a convergent response to both PAMPs in these

pathways in rice but also investigated detailed regulatory mech-

anism that may cause the differential responses, particularly via

PTMs such as ubiquitination and acetylation. By mapping the

variations in metabolites and regulatory events detected in multi-

omics analyses, we systematically investigated connections

between genetic control and chemical compounds in the

glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, flavo-

noid biosynthesis and linoleic acid-associated pathways during

PTI. Phenylpropanoid biosynthesis is well known to be involved in

defence response in Arabidopsis (Dixon et al., 2002; Jones and

Dangl, 2006). The increase in metabolites in the phenylpropionic

acid biosynthesis pathway correlated with decreased ubiquitina-

tion level of the enzymes in this pathway, indicating a coordi-

nated phenylpropanoid regulon exists by translational regulation.

We detected mRNA and PTMs variations in enzyme [2.3.1.74]

that was down-regulated in response to both chitin and flg22,

which may lead to increased levels of metabolites in flavonoid

biosynthesis. It is widely known that flavonoids play a key role in

immunity (Iranshahi et al., 2015; Petrussa et al., 2013), and many

studies have described the antifungal potential of flavonoids

(Chen et al., 2019; Iranshahi et al., 2015; Piasecka et al., 2015;

Sekiya et al., 2021). Yet, it is still largely unknown how the

flavonoids biosynthesis pathway is regulated in rice. Most of the

genes, enzymes and compounds of the phenylpropanoid

biosynthesis and flavonoid biosynthesis pathway changed signif-

icantly in response to chitin and flg22 (Figures 3C, 6d,e and 8).

Induced accumulation of the products of the phenylpropanoid

biosynthesis pathway correlated with enhanced transcription and

higher abundance of the corresponding enzymes [6.2.1.12],

[1.14.13.1] (Figure 8). Increases in metabolites of the phenyl-

propanoid biosynthesis pathway were also associated with

significantly lowered ubiquitination levels of the enzymes, indi-

cating that a coordinated phenylpropanoid regulon exists by

translational regulation. We detected mRNA/proteins and PTMs

variations in enzyme [2.3.1.74] that is down-regulated in

response to both chitin and flg22, which may lead to increased

levels of metabolites in flavonoid biosynthesis.

We highlighted linoleic acid-associated pathways probably as

an flg22-specific responsive pathway by multiple-omics analysis

and uncovered a number of genes that may negatively modulate

these pathways. As a specific response to flg22, we found linoleic

acid metabolism was probably down-regulated as almost all the

detected metabolites were decreased. Linoleic acid metabolism

and a-linolenic acid metabolism pathways were specifically

enriched among altered compounds and DEGs in flg22-treated

samples. As a result, induction of the linoleic acid metabolism and

a-linolenic acid metabolism will lead to accumulation of linoleic

acid and a-linolenic acid, which have been reported to be

involved in callose accumulation, a classic plant PTI response

(Nehela and Killiny, 2020; Zhao et al., 2015). The linoleic acid and

a-linolenic acid may be related to activation of JA-mediated

signalling pathway (Kachroo and Kachroo, 2009). It is interesting

to reveal detailed roles and molecular regulatory mechanisms of

linoleic acid metabolism and a-linolenic acid metabolism, as well

as linoleic acid and a-linolenic acid, in rice PTI defence response.

Moreover, we found some other pathways related to lipids (non-

saturated fatty acids biosynthesis), terpenoids (diterpenoid,

sesquiterpenoid and triterpenoid biosynthesis) and vitamins

(biotin metabolism and riboflavin metabolism) seem to be also

specifically responsive to flg22, which would be interesting for

further experimental study in the future. In fact, complex lipid

changes have been widely found to produce potential molecular

signatures to regulate transcriptional networks during PTI (Lim

et al., 2017; Walley et al., 2013; Kachroo and Kachroo, 2009).

Future studies need to focus on elucidating the functional

significance of the observed specific metabolite changes and

integrate all the functional data into predictive models towards

holistic understanding of the signalling and metabolic processes

underlying plant immunity.

Methods

Plant materials and treatment of PAMPs

Rice (Nipponbare) seedlings were prepared by cultivating the rice

seeds in half strength Murashige and Skoog medium for 1 week

at 28°C. Then, the rice seedlings were treated by immersing them

in 8 nM chitin (Macklin, China) or 1 lM flg22 (Santa Cruz, CA)

solution for different times (Chen et al., 2018). The rice seedlings

treated with water were used as control. For immunoblotting

experiment (0, 0.5, 1, 2, 3 and 6 h) in Figure 1B and gene

expression experiments (3 h) in Figure 1C, three biological

replicates were used for assessment. For transcriptome, pro-

teome, ubiquitome and acetylome experiments, the rice seedlings

were harvested after treatment of water, 8 nM chitin or 1 lM
flg22 for 3 h. For each treatment, five plants were used in each of

the three biological replicates (3 9 5 = 15 rice plants/treatment),
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and the treated rice seedlings were harvested at 3 h post-

treatment (hpt) using liquid nitrogen and stored at �70°C for

further analysis. For metabolome analysis, five plants in each of

the ten biological replicates (10 9 5 = 50 rice plants/treatment)

were used.

Quantitative reverse transcription PCR (qRT-PCR)

Total RNA was extracted by using TRIzol reagent (Invitrogen) from

rice seedlings treated with water, chitin or flg22 for 3 h. The total

RNA was treated with DNaseI (Invitrogen) to remove genomic

DNA and, then, was used to synthesize the cDNA using the

Reverse Transcription System (Promega). The qRT-PCR reaction

system was prepared using SYBR Green mix (TAKARA, Dalian,

China), and was performed on an ImyiQ2 real-time PCR detection

system (Bio-Rad). Expression of genes was normalized by com-

paring with a ubiquitin-encoding gene OsUBQ1. Expression of the

defence-related genes in response to chitin or flg22 treatment

was compared to that of water treatment for 3 h.

Detection of ROS accumulation

To detect ROS accumulation, 4-mm-length leaf segments were cut

from 1-week-old rice seedlings and incubated in distilled water for

12 h. Three leaf fragments were treated with either 8 nM chitin or

1 lM flg22 in 100 mL of luminol solution, Immun-Star HP substrate

(Bio-Rad) and 1 mL of horseradish peroxidase streptavidin (Jackson

Immunoresearch). Luminescence was recorded every 20 s on a

Glomax 20/20 Luminometer (Promega) for 20 min.

Western blot analysis

To detect phosphorylation level of MAPK3/6, total proteins were

extracted from different samples. Rice seedling samples were

grinded in liquid nitrogen, and was added to extraction buffer

(50 mM HEPES (pH 7.4), 5 mM EDTA, 5 mM EGTA, 50 mM b-

glycerophosphate, 10 mM Na3VO4, 10 mM NaF, 2 mM DTT,

protease inhibitor cocktail, 1% SDS or Triton X-100). Around

50 lg total proteins were separated by SDS-PAGE and blotted

onto the PVDF membrane. The Anti-Phospho-p44/42 antibody

(1:1000, Cell Signaling Technology) was used for immunoblotting.

Metabolites profiling

Frozen rice seedling samples were suspended with 1 mL ethanol:

acetonitrile: water (2:2:1, v/v) per 80 mg of tissue fresh weight.

The samples were then sonicated for 30 min, and then cen-

trifuged for 15 min (13 000 rpm, 4°C). The aliquots were kept at

�80°C and used to be analysed by ultra-high-performance liquid

chromatography equipped with quadrupole time-off light mass

spectrometry (UPLC-Q-TOF/MS). Untargeted metabolic profiling

was performed on an Agilent 1290 Infinity LC system (Agilent

Technologies, Santa-Clara, California). Chromatographic separa-

tion was implemented on ACQUITY HSS T3 1.8 µm
(2.1 9 100 mm) columns. Detection condition was set at 25°C,
with 0.3 mL/min flow rate and 2 lL sample size per each run.

The two mobile-phase solvents were water, 25 mM ammonium

acetate and 25 mM ammonia (Solvent A) and acetonitrile (Solvent

B). To optimize compound detection, the gradient elution

programme ran as following: 95% Solvent B for 0–1 min, and

linearly changed Solvent B from 95% to 65% for 1–14 min, from

65% to 40% for 14–16 min, maintained at 40% for 16–18min,

linearly changed 40% to 95% for 18–18.1 min and maintained

at 95% for 18.1–23 min. The entire operation was running under

4°C. To ensure the reproducibility and stability of the analysis,

quality control samples were used by pooling 10 lL of each

sample and analysed along with other samples. The QC samples

were introduced in every 10 samples.

TOF/MS was performed on positive ion mode and negative ion

mode. Electrospray ionization (ESI) source conditions on triple TOF

were set as following: ion source gas 2, 60 psi; curtain gas, 30 psi;

source temperature, 600 °C and ionspray voltage floating,

5500 V (+) and �5500 V (�). The TOF/MS scan m/z range is

60–1000 Da, the product ion scan m/z range is 25–1000 Da, the

TOF MS scan accumulation time is 0.20 s/spectra, and the

product ion scan accumulation time is 0.05 s/spectra.

Information-dependent acquisition (IDA), an artificial

intelligence-based product ion scan mode, were used to detect

and identify MS/MS spectra. The parameters were set as follows:

declustering potential, 50 V (+) and �50 V (�); collision energy,

50 V (+) and �20 V (�); exclude isotopes within 4 Da and

candidate ions to monitor per cycle: 6. The raw UPLC-TOF/MS

output files were processed to acquisite metabolite peaks by

estimating signal tensity by the XCMS-CAMERA mass scan data

pipeline. The features with more than 1000 m/z were filtered.

Only the peaks detected in >90% samples were kept for further

analysis. We then incorporated raw data with XC-MS workflow

(Smith et al., 2006) and produced analysis by discarding features

with missing values as intensity in more than 10% of total

samples, after normalization and quality control. MetaAnalyst 4.0

was used to perform Pearson correlation coefficient between the

replicates, and normalization by auto-scaled method. A cluster

analysis and pair-wise comparison using MetaAnalyst were

performed to determine altered metabolites between chitin-

and flg22-treated samples and ck samples.

Transcriptome profiling

Total RNA from rice seedling samples was extracted using Trizol

regent. After quality control using Bioanalyser Agilent 2100,

mRNA was enriched by PloyA and sequenced using the Illumina

HiSeq-2500 (Novogene, Beijing). Low-quality reads and adaptor

sequences were filtered using Trimmomatic 0.36. Transcript

abundance was generated by Kallisto using reference genome

(Bray et al., 2016). The transcript and gene read count were

optimized from TPM counts using gene length variations across

samples by tximport (Soneson et al., 2015). Sequencing depth,

library sizes, reads dispersion and dropout were estimated by

estimateParam in PowsimR package (Nedergaard et al., 2018).

DESeq dataset from tximport function was used to build DESeq

set for further analysis. To assess repeatability of three replicates,

principal component analysis and Euclidean distance analysis

were performed. To estimate and remove batch effects between

replicates in each group, the sva package was used (Leek et al.,

2012). Normalized transcript abundances were estimated

and differentially expressed genes analysis was performed by

DESeq function in DESeq2 package. Only the genes showing

differential expression with log2|FC| > 1 with <0.05 P-adjust

values were defined as differentially expressed genes in pair-wise

comparisons. To perform enrichment analysis of pathways in rice,

function Enrich KEGG in the R package clusterProfilter v3.16 was

used (Yu et al., 2012) by inputting list of genes for corresponding

analysis. For gene ontology enrichment analysis, AgriGO toolkits

(Du et al., 2010) were used with the Oryza sativa Japonica

database. The interested GO terms were kept using P-adjust

values cut-offs (0.05) for significances. To visualize the network of

gene ontology terms, Cytoscape 3.8 software with ClueGO

plugin was used. For mapping the metabolites and transcript into

pathways, Pathview (Version 3.11) (Luo et al., 2017) was used to
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produce detailed mapping for the selected pathways. All the

figures and heatmaps were produced by ggplot2 and pheatmap

package in R, unless otherwise specified.

iTRAQ proteomics profiling

Total proteins of the rice seedling samples were extracted as

described by Chen et al., 2018. The samples were frozen in liquid

nitrogen and ground with a pestle and mortar. Five times volume

of TCA/acetone (1:9) was added to the powder and mixed by

vortex. The mixture was placed at �20 °C for 4 h and centrifuged

at 6000 g for 40 min at 4 °. The supernatant was discarded. Pre-

cooled acetone was added and washed for three times. The

precipitation was air dried. Thirty times volume of SDT buffer was

added to 30 mg powder, mixed and boiled for 5 min. The lysate

was sonicated and then boiled for 15 min. After centrifuged at

14 000 g for 40 min, the supernatant was filtered with 0.22 µm
filters. The filtrate was quantified with the BCA Protein Assay Kit

(Bio Rad). The sample was stored at �80 °C; 20 µg of proteins for

each sample, 20 µg of proteins was mixed with 59 loading buffer,

and boiled for 5 min. The proteins were separated on 12.5% SDS

PAGE gel (constant current 14 mA, 90 min). Protein bands were

visualized by Coomassie Blue R 250 staining.

A total of 200 lg proteins for each sample were dissolved into

30 lL SDT buffer (4% SDS, 100 mM DTT, 150 mM Tris HCl pH

8.0). The detergent, DTT and other low molecular weight com-

ponents were removed using UA buffer (8 M Urea, 150 mM Tris

HCl pH 8.0) by repeated ultrafiltration (Microcon units, 10 kD).

Then, 100 lL iodoacetamide (100 mM) IAA in UA buffer was

added to block reduced cysteine residues and the samples were

incubated for 30 min in darkness. The filters were washed with

100 lL UA buffer three times and, then, 100 lL D isolation

buffer (DS twice). Finally, the protein suspensions were digested

with 4 lg trypsin (Promega) in 40 lL DS buffer overnight at 37 °
C, and the resulting peptides were collected as a filtrate. The

peptides of each sample were desalted on C18 Cartridges

(EmporeTM SPE Cartridges C18, standard density), bed I.D.

7 mm, volume 3 mL; Sigma-Aldrich, St. Louis, MO), concentrated

by vacuum centrifugation and reconstituted in 40 µL of 0.1% (v/

v) formic acid. The peptide content was estimated by UV light

spectral density at 280 nm using an extinctions coefficient of 1.1

of 0.1% (g/L) solution that was calculated on the basis of the

frequency of tryptophan and tyrosine in vertebrate proteins.

A total of 100 lg peptide mixture of each sample was labelled

using iTRAQ reagent according to the manufacturer’s instructions

(Applied Biosystems, Foster City, CA). iTRAQ labelled peptides

were fractionated by SCX chromatography using the AKTA

Purifier System (GE Healthcare, Boston, MA). The dried peptide

mixture was reconstituted and acidified with buffer A (10 mM

KH2PO4 in 25% of ACN, pH 3.0) and loaded onto a

PolySULFOETHYL 4.6 9 100 mm column (5 lm, 200 �A, PolyLC

Inc., Columbia, MD). The peptides were eluted at a flow rate of

1 mL/min with a gradient of 0%–8% buffer B (500 mM KCl,

10 mM KH2PO4 in 25% of ACN, pH 3.0) for 22 min, 8–52%
buffer B during 22–47 min, 52%–100% buffer B during 47–
50 min, 100% buffer B during 50–58 min and buffer B was reset

to 0% after 58 min. The elution was monitored by absorbance at

214 nm, and fractions were collected every 1 min. The collected

fractions were desalted on C18 Cartridges (EmporeTM SPE

Cartridges C18, standard density), bed I.D. 7 mm, volume 3 mL

(Sigma) and concentrated by vacuum centrifugation.

Each fraction was injected for nano-LC-MS/MS analysis. The

peptide mixture was loaded onto a reverse phase trap column

(Thermo Scientific Acclaim PepMap100), 100 lm 9 2 cm and

nanoViper C18 connected to the C18 reversed phase analytical

column (Thermo Scientific Easy Column, 10 cm long, 75 lm
inner diameter and 3 lm resin) in buffer A (0.1% Formic acid)

and separated with a linear gradient of buffer B (84% acetonitrile

and 0.1% formic acid) at a flow rate of 300 nL/min controlled by

IntelliFlow technology.

LC-MS/MS analysis was performed on a Q Exactive mass

spectrometer (Thermo Scientific, Waltham, MA) that was coupled

to Easy nLC (Proxeon Biosystems, now Thermo Fisher Scientific)

for 120 min. The mass spectrometer was operated in positive ion

mode. MS data were acquired using a data-dependent method

dynamically choosing the top 10 most abundant precursor ions

from the survey scan (300–1800 m/z) for HCD fragmentation.

Automatic gain control (AGC) target was set to 3e6, and

maximum inject time to 10 ms. Dynamic exclusion duration was

40.0 s. Survey scans were acquired at a resolution of 70 000 at

m/z 200 and resolution for HCD spectra was set to 17,500 at m/z

200 and isolation width was 2 m/z. Normalized collision energy

was 30 eV and the underfill ratio, which specifies the minimum

percentage of the target value likely to be reached at maximum

fill time, was defined as 0.1%. The instrument was run with

peptide recognition mode enabled.

MS/MS spectra were searched using the MASCOT engine

(Matrix Science, London, UK; version 2.2) embedded into

Proteome Discoverer 1.4 using 20 ppm Mass Torrance. The

missing values in the dataset were imputed use DEP package in R,

and the peptide ratios were normalized by the median protein

ratio. Correlation analysis and principal component analysis were

performed using R. For differentially expressed proteins analysis,

t-test was performed by each pair-wise comparison and P-values

were corrected by Bonferroni correction. Differentially expressed

proteins were defined by log2-fold changes ≥1, with <0.05 P-

adjust values in each pair-wise comparison.

The proteins analysis for PTMs

The dataset for ubiquitination was used from previous study

(Chen et al., 2018). To identify peptides modified by acetylation,

10 mg of each group of samples were used to add 45 mL TCA/

acetone (1:9, containing 65 mM DTT). The samples were precip-

itated overnight at �20 °C and then sent for centrifuge at

7000 9g for 20 min. The supernatant was discarded, following

the addition of 40 mL of pre-cooled acetone with 7000 9g

centrifuge for 15 min to remove the supernatant. The washing

process was repeated three times and the precipitate was dried at

room temperature. Take the dried powder, add an appropriate

amount of SDT lysis solution, boil in a water bath for 15 min and

repeat the boiling twice. Ultrasound the sample (100w, ultrasonic

10s, interval 10s and repeat 10 times). Centrifuge at 13 400 rpm

for 20 min and collect the supernatant. Bicinchoninic Acid (BCA)

method was used for protein concentration determination. After

that, 20 lg of each protein sample was added with 59 loading

buffer and was incubated in boiling water bath for 5 min. The

samples were centrifuged at 14 000 9g for 10 min to take the

supernatant and performed 12.5% SDS PAGE electrophoresis.

For enzymatic hydrolysis of protein, 10 mg of each sample was

added with DTT to the final concentration of 10 mM at 37 °C for

2.5 h, and then cooled to the room temperature. Add IAA to a

final concentration of 50 mM and avoid from light for 30 min.

Each sample was added five times the volume of water to dilute

the UA concentration to 1.5 M, following addition of trypsin at a

ratio of 1:50 and digest for 18h at 37 °C. For enrichment of
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acetylated peptides, each sample was lyophilized by adding

1.4 mL of pre-chilled IAP Buffer, then adding pre-treated anti-Ac-

K antibody beads (PTMScan, Acetyl Lysine Motif Ac K Kit, Cell

Signaling Technology, Beverly, MA). The samples were incubated

at 4 °C for 1.5 h, then centrifuged at 2000 g for 30 s, and the

supernatant was discarded. Anti-Ac-K antibody beads are washed

three times with 1 mL of pre-cooled IAP Buffer, and then washed

three times with 1 mL of pre-cooled water. The clear samples

were added with 40 lL of 0.15% TFA to the washed anti-Ac-K

antibody beads at room temperature for 10 min, following

addition of a total of 0.15% TFA twice. Centrifuge at 2000 g for

30S, take the supernatant and desalinate by C18 STAGE Tips.

The samples were processed for the enriched acetylated

peptides for LC-MS/MS analysis. The nano-litre flow rate HPLC

liquid system, System EASY nLC1000, was used for separation.

Liquid A was 0.1% formic acid acetonitrile aqueous solution and

2% acetonitrile; and liquid B was 0.1% formic acid acetonitrile

aqueous solution and acetonitrile is 84%. Chromatographic

column Thermo EASY column SC200 7/11 150 lm*100 mm was

balanced to100% AA liquid. The samples were loaded by the

autosampler to liquid equilibrium, onto the Thermo EASY column

SC001 traps 150 lm*20 mm (RPEASY column SC001 traps

150 lm*20 mm (RP-CC1818)) ((ThermoThermo)) by the

autosampler, and then passed through the chromatographic

column and separated by the chromatographic column. The

relevant liquid-phase gradients are as follows: For 0 to 110 min, B

liquid was increased linearly from 0% to 55%; for 110 to

118 min, Bliquid was increased linearly from 55% to 100% and

for 118 to 120 min, B liquid was maintained at 100%. Capillary

high-performance liquid chromatography was used after separa-

tion. The Q Exactive mass spectrometer (Thermo Finnigan) was

used for mass spectrometry. Analysis time: 120 min, detection

method: positive ion and parent ion scan range: 350–1800 m/z.

For peptides and peptides, the mass-to-charge ratio of the

fragments was collected according to the following method: 20

pieces are collected after each full scan, Fragment Map MS 2 scan

HCD. MS 1 has a resolution of 70 000 at M/Z 200 MS 2 at M/Z.

The resolution was 17 500 at 200 h. The raw data were imported

into Maxquant (Version 1.3.0.5), and annotated peptides using

amino acid FASTA file obtained from NCBI, by using parameters

as below: main search ppm: 6; missed cleavage: 4; MS/MS

tolerance pmm: 20; peptide FDR:0.01; protein FDR:0.01 and fixed

modification carbamidomethyl (C).
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Figure S4 Overview of proteomics analysis

Figure S5 Overview of ubiquitomics analysis

Figure S6 Overview of acetylomics analysis

Figure S7 Integrative analysis of multi-omics data of rice affected

by chitin- and flg22-treatment

Figure S8 Mapping of cellular processes and metabolic pathways

suppressed by chitin and flg22 treatment

Dateset S1 All features from metabolomics.

Dateset S2 Significantly altered chemical compounds upon chitin

and flg22 induction.

Dateset S3 Metabolic pathways enriched by altered compounds

detected in metabolomics.

Dateset S4 Differentially expressed genes in rice responding to

chitin and flg22.

Dateset S5 Differentially expressed genes related to rice innate

immunity.

Dateset S6 Expression of all proteins detected by iTRAQ analysis.

Dateset S7 Differentially expressed proteins in rice responding to

chitin and flg22.

Dateset S8 Expression of ubiquitinated proteins detected in

ubiquitome.

Dateset S9 Quantitative analysis of differentially ubiquitinated

proteins.

Dateset S10 Expression of acetylated proteins detected in

acetylome.

Dateset S11 Quantitative analysis of differentially acetylated

proteins.
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